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Abstract

This paper presents a 3-D hierarchical (p-version) finite element description of the solid displacement–
fluid displacement form of Biot’s equation for elasto-acoustic modelling of multiple-layered isotropic
porous media.
The convergence related to mesh refinement extensions for different orders of polynomial approximation

is briefly discussed for a homogeneous foam. The highest computational efficiency for reasonable levels of
the error in the low-frequency region was obtained for fourth-order polynomial finite element
interpolations. The main focus is on coupling conditions and on the convergence of solutions to Biot’s
equations in cases with multiple layers having different material properties. Simulations of a two-layered
porous material with low flow resistivity suggest slow convergence rate of the fluid displacement field close
to the interface between the layers.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing demand for weight and cost reductions in the design and construction of modern
vehicles requires future generation of noise and vibration treatments to be more efficient as
compared to the present state of the art. As a result, lightweight poroelastic materials with high
internal damping have become more interesting as an alternative or a complement to traditional
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

Operators and functions

! n! ¼ nðn � 1Þ . . . 1 (faculty)

!! n!! ¼
nðn � 2Þ . . . 1; n is odd

nðn � 2Þ . . . 2; n is even

�

(semi faculty)

int integer part of a real number
ðv;wÞL L2-inner product defined as

R
L vw̄dL;

where L is a volume or surface in R3

and v;w 2 L2ðLÞ

Superscripts

k finite element ordinal number
s solid part of porous medium
f fluid part of porous medium

¯ (over-line) denotes complex conju-
gate

Subscripts

e sub-domain (material layer) ordinal
number

i; j component ordinal number in Carte-
sian coordinate system

; i partial derivative with respect to the
Cartesian component xi

Variables

p number of hierarchical polynomials
x1; x2; x3 Cartesian spatial coordinate compo-

nents
x1; x2; x3 element local spatial coordinate com-

ponents
us

i displacement component in Cartesian
coordinate direction i for the solid
part m

u
f
i ditto for the fluid part

vs
i test function for displacement com-

ponent in Cartesian coordinate direc-
tion i for the solid part

v
f
i ditto for the fluid part
u six-dimensional displacement compo-

nent vector fu1; u2; u3; u4; u5; u6g �
fus
1; u

s
2; u

s
3; u

f
1; u

f
2; u

f
3g

v six-dimensional displacement compo-
nent vector of test function

e six-dimensional component vector of
error function

AðÞ function which maps a finite element
local coordinate system on the global
coordinate system

Bð	; 	Þ sesquilinear complex functional con-
taining left-hand side in the weak
formulation

F ð	Þ antilinear complex functional con-
taining loads and natural boundary
conditions

m Dynamic Lamé parameter (dynamic
shear modulus)

l Dynamic Lamé parameter at con-
stant fluid pressure

Kb bulk modulus of the solid frame at
constant fluid pressure

Ks bulk modulus of the material which
the solid frame consists of

Q dilatational coupling factor between
the fluid phase and the solid frame

R bulk modulus of the fluid phase at
zero solid frame dilatation

b viscous drag coefficient
r11 corrected mass density for the solid

frame
r12 inertial coupling factor
r22 corrected mass density of the fluid

phase
f porosity
ppore homogenised fluid pore pressure
ni unit normal vector outward the

boundary
ss

ij Cauchy stress tensor for the porous
frame

~ss
ij Cauchy stress tensor proposed in Ref.

[9]
ss0

ij Cauchy stress tensor for the porous
frame in absence of fluid pressure

Ti traction vector for the porous frame
T0

i structural traction vector for the
porous frame

T tot
i total traction vector for the porous

aggregate
o angular frequency
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fðl1;l2;l3Þ finite element shape function
cðl1;l2;l3Þ generalised degree of freedom
f l polynomial in finite element shape

functions
O domain in R3

V function space of trial functions with
domain O; satisfying essential bound-
ary conditions

V0 function space of test functions with
domain O; and with those compo-
nents being zero on boundaries where
essential boundary conditions exist
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viscoelastic layers in different configurations. In order to find optimal configurations which
include poroelastic materials, accurate simulation tools are a pre-requisite.
The theory attributed to Biot [1] is used to describe poroelastic materials as coupled

homogenised solid and fluid continua. Previous work on the convergence of elasto-acoustic finite
element solutions for poroelastic materials has focused on homogeneous porous media, possibly
coupled to a pure solid or a pure fluid media e.g. [2–4]. In Ref. [4], a three-dimensional
hierarchical finite element formulation for isotropic porous media was presented. The fluid
displacements and the solid displacements were used as dependent variables, as in the original
formulation by Biot. The p-convergence was studied for a parallelepiped-shaped geometry with
realistic material parameters representing a polyurethane foam material. A general observation
was that p-enrichment gave fast convergence in comparison with mesh refinements of linear and
quadratic elements. However, only one single element was considered for the p-extensions.
As an extension of previous work by the same author, this paper briefly discusses mesh

refinements of hierarchical elements, together with boundary conditions and coupling conditions of
porous sub-domains having different material properties. In Section 2, a weak form of Biot’s
equation for a layered porous material will be stated in a general way and an alternative equivalent
way of writing the boundary integral is proposed. Details of situation-specific coupling conditions
and boundary conditions will be covered in Sections 3 and 4. In Section 5, the hierarchical finite
element basis and its implementation are briefly described. In Section 6, the hp-convergence, here
defined as the mesh refinement convergence for different values of p [5], is studied for the same case
(geometry, material and loading) as in Ref. [4]. To illustrate the behaviour of finite element solutions
for a layered media, a numerical example of a two-layered porous material is presented in Section 7.
The material properties in the first layer, are identical to the previous example. In the second layer,
the volume porosity is taken to be different and as a result the fluid displacement will be
discontinuous over the layer interface. It is shown that slow convergence exclusively for the fluid
displacement occurs close to the layer interface in both layers in this example. This slow convergence
behaviour decreases as the flow resistivity is taken to be increased. Both in the single-layer example
and the two-layer example, it is shown that higher-order polynomials are needed to accurately
describe the displacement fields with an acceptable computational efficiency.
2. Weak formulation of Biot’s equations

Consider a three-dimensional regular open domain O 
 R3 enclosed by its boundary G: O is
considered to be composed of geometrically disjoint sub-domains Oe; e ¼ 1; 2; . . . ;Ne: These
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sub-domains represent layers with different material properties. It is also assumed that these
properties are uniform within each sub-domain. The boundaries Ge which enclose Oe may be
divided into two parts: on one hand the joint boundaries of mutually adjacent sub-domains and
on the other hand, the disjoint part. The former part are coupling interfaces on which coupling

conditions have to be imposed. These are dependent on the way different material layers are
attached to each other, and are described in some detail in Section 4. However, common to all
coupling conditions the conservation of fluid flux

f1u
f 1
i n1i þ ð1� f1Þu

s1
i n1i ¼ f2u

f 2
i n1i þ ð1� f2Þu

s2
i n1i (1)

and also Newtons third law of action and reaction, i.e., traction vector symmetry

T tot1
i þ T tot2

i ¼ 0 (2)

must always be satisfied. (T tot1
i and T tot2

i are the total traction vectors of two adjacent sub-
domains with labels 1 and 2.) The latter part defines the outer boundary G where the boundary
conditions are imposed. Different kinds of boundary conditions are discussed in Section 3. If
material isotropy, time harmonic motion and small displacements are assumed, a displacement
form of Biot’s equations may be written as [4]

mus
i; jj þ ðlþ mÞus

j; ji þ ðo2r11 � iobÞus
i þ Qu

f
j; ji þ ðo2r12 þ iobÞu

f
i ¼ 0; (3a)

Qus
j; ji þ ðo2r12 þ iobÞus

i þ Ru
f
j; ji þ ðo2r22 � iobÞu

f
i ¼ 0: (3b)

All derivatives are with respect to the spatial coordinates xi; i ¼ 1; 2; 3 in a global Cartesian
coordinate system. The material parameters l; m; Q, R, b, Kb; Ks and Kf should be considered as
complex-valued and dependent of the angular frequency o: The derivation of the material
parameters are described in Refs. [6–8].
Eqs. (3a) and (3b) may be multiplied by suitable test functions and then integrated by parts.

Then a weak form of Biot’s equations in each sub-domain may be written as [4]

Find u 2 Ve such that

Beðu; vÞ ¼ FeðvÞ 8v 2 V0
e ;

(4)

where

Beðu; vÞ ¼
def mðus

i; j; v
s
i; jÞOe

þ mðus
j;i; v

s
i; jÞOe

þ ðlþ Q2=RÞðus
j; j; v

s
i;iÞOe

� o2r11ðu
s
i ; v

s
i ÞOe

þ iobðus
i ; v

s
i ÞOe

þ Qðu
f
j; j; v

s
i;iÞOe

� o2r12ðu
f
i ; v

s
i ÞOe

� iobðu
f
i ; v

s
i ÞOe

þ Qðus
j; j; v

f
i;iÞOe

� o2r12ðu
s
i ; v

f
i ÞOe

� iobðus
i ; v

f
i ÞOe

þ Rðu
f
j; j; v

f
i;iÞOe

� o2r22ðu
f
i ; v

f
i ÞOe

þ iobðu
f
i ; v

f
i ÞOe

ð5aÞ

and

FeðvÞ ¼
def
ð ~ss

ijnj; v
s
i ÞGs

e
þ ðQ=RÞð�fpporene

i ; v
s
i ÞGsf

e
þ ð�fpporene

i ; v
f
i ÞGf

e
; (5b)
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ne
i pointing outwards from the sub-domain. See Nomenclature for the definition of L2-inner
products ð	; 	ÞL: Expressions (5a) and (5b) were derived in detail in Ref. [4] and will not be repeated
here. In the whole domain, O; the weak formulation is written as

Find u 2 V :

Bðu; vÞ ¼ F ðvÞ 8v 2 V0;
(6)

where Bðu; vÞ ¼
PNe

e¼1 Beðu; vÞ: It may be shown that, in order to satisfy the Eqs. (1) and (2),
boundary integrals from mutually adjacent sub-domains must cancel out. Hence F ðvÞ is identified
as F ðvÞ ¼

PNe

e¼1FeðvÞ: V is defined as a subset of the Cartesian product of all Ve such that the
kinematic boundary conditions and the kinematic couplings between the sub-domains are
satisfied. V0 is similarly defined, but with the homogeneous corresponding kinematic boundary
conditions satisfied.
The stress tensor ~ss

ij in Eq. (5b), proposed by Atalla in Ref. [9], is defined as

~ss
ij ¼
def mðus

i; j þ us
j;iÞ þ lus

k;kdij: (7)

The frame stress is then written as (cf. Ref. [6])

ss
ij ¼ ~ss

ij þ ðQ2=RÞus
k;kdij þ Qu

f
k;kdij (8)

and the pore pressure as [6]

�fppore ¼ Qus
k;k þ Ru

f
k;k: (9)

If Eq. (9) is inserted in Eq. (8), then u
f
k;k is eliminated and the stress in the frame is then written as

[9]

ss
ij ¼ ~ss

ij þ ðQ=RÞð�fpporeÞ: (10)

Unlike ss
ij; ~s

s
ij is not explicitly dependent of u

f
i :However, on a boundary where the frame is only in

contact with a surrounding fluid with the pressure p ¼ ppore (see Eq. (29)), not only ss
ij but also ~ss

ij

is non-zero since according to Ref. [6] in such a case,

us
j; j ¼ �ppore=Ks; (11)

where Ks is the bulk modulus for the solid material from which the frame is made. If Eq. (11) is
inserted in Eq. (7), the stress tensor ~ss

ij is obviously non-zero.
To simplify the formulation of certain boundary conditions, it might be advantageous to seek

an alternative division of the frame stress into parts of pure structural origin ss0and pure fluid
pressure origin ssp

ij ; i.e.,

ss
ij ¼ ss0

ij þ ssp
ij : (12)
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Such division allows pure structural load and pure fluid pressure load to be specified
independently in a convenient way. The frame dilatation us

j; j is likewise decomposed into

us
j; j ¼ us0

j; j þ u
sp
j; j; (13)

where us0
j; j is the frame dilatation induced by a pure structural (transparent) load in the absence of

fluid pressure. The corresponding structurally induced frame stress is

ss0
ij ¼ mðus0

i; j þ us0
j;iÞ þ lus0

k;kdij: (14)

In the other part, u
sp
j; j is the frame dilatation induced by the pore pressure in the absence of any

structurally induced load and is given by [6]

u
sp
j; j ¼ �p=Ks; (15)

as in Eq. (11). Inserting Eq. (7) in Eq. (10), the stress–strain relation for the corresponding pore
pressure-induced frame stress may be written as

ssp
ij ¼ ðKbu

sp
k;k þ ðQ=RÞð�fpporeÞÞdij ; (16)

since no shear is involved in this case; Kb ¼ lþ 2
3
m is the bulk modulus for the porous frame in the

absence of pore pressure. According to Ref. [6], this stress is related to the applied pore pressure
by

ssp
ij ¼ �ð1� fÞpporedij : (17)

From the expressions of Q and R in Ref. [6], ðQ=RÞf is derived as

ðQ=RÞf ¼ 1� f� Kb=Ks: (18)

If Eq. (18) along with Eq. (15) are inserted into Eq. (16), Eq. (17) is obtained as expected. The
total stress of the porous aggregate stotij ¼

def ss
ij þ ð�fpporeÞdij is in this particular case simply equal

to �pporedij as expected, and in general stotij ¼ ss0
ij � pporedij: If Eq. (17), is inserted into Eq. (12),

the frame stress may be written as the superposition of a pure structural part and a pure pore
pressure part contribution, i.e.,

ss
ij ¼ ss0 � ð1� fÞpporedij : (19)

This decomposition simplifies the specification of the natural boundary conditions in Section 3.
Finally, Eq. (5b) may now be written as

FeðvÞ ¼
def
ðT0

i ; v
s
i ÞGs

e
þ ð1� fÞð�pporene

i ; v
s
i ÞGsf

e
þ ð�fpporene

i ; v
f
i ÞGf

e
; (20)

where T0
i ¼
def ss0

ij nj is the structural traction vector.
The coupling conditions between adjacent sub-domains will be discussed in more detail in

Section 4. However, to arrive at these, it is useful to review some combinations of boundary
conditions first.
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3. Boundary conditions

A porous boundary may, referring to Biot’s original work, be classified as jacketed or
unjacketed.
Jacketed means that the normal component of the solid displacement and the normal

component of the fluid displacement are assumed to be equal, i.e.,

u
f
i ni ¼ us

i ni: (21)

A jacket may be regarded as a thin impervious membrane covering, the boundary. For this kind
of covering, only the pure Dirichlet condition or the pure Neumann conditions in the normal
direction for both the frame and the fluid may be specified at the boundary. This is clear from the
dependence between the normal displacement components of the frame and the fluid described by
Eq. (21).
Unjacketed means, on the other hand, that these normal components are not mutually

constrained and thus that also mixed Neumann and Dirichlet conditions are allowed to be
specified for the fluid and the frame. For the Dirichlet conditions, the normal component of frame
displacements or the normal component of the fluid displacement is prescribed. However,
prescription of the fluid displacement on an unjacketed boundary are merely of formal character.
A more physical boundary condition is an injection condition, where the amount of fluid which
enters the porous aggregate is prescribed. This may be written as a prescription of the normal
component of the total displacement, i.e.,

ð1� fÞus
i ni þ fuf ni ¼ utotG : (22)

These boundary conditions may be combined with Dirichlet or Neumann condition on the frame
(see below). In the former case, this is equivalent to the pure Dirichlet condition, previously
mentioned, but in the latter case the injection condition must be imposed as a linear constraint
equation given by Eq. (22), where in this case uf ni must be constrained (eliminated).
For the Neumann condition, the normal component of the structural traction vector T0

i ni is
prescribed for the frame and the ambient pressure p is prescribed for the fluid. It should be noted
that the normal component of the frame stress traction vector Tini ¼ niss

ijnj is only known a priori
in the case of the pure Neumann condition from Eq. (19), since it includes both the structural
traction vector and the ambient pressure.
In case of the pure Neumann condition for a jacketed boundary, the normal component of the

structural traction vector and the pore pressure is not prescribed separately, but only the normal
component of the total stress traction vector

T tot
i ni ¼ niss

ijnj � fp (23)

is known a priori and may be prescribed. This is consistent with Eq. (20) since the test functions
for the solid and the fluid on the boundary are constrained according to Eq. (21).
Note that in the above discussion only conditions normal to the boundary are considered. The

tangential components of the structural displacement us
i � us

j njni (for the Dirichlet condition) or
the tangential components of the structural traction vector T0

i � T0
j njni (for the Neumann

condition) are not involved in this classification and such boundary conditions are here treated
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separately and independently of the normal conditions, regardless of whether the boundary is
jacketed or not.
4. Coupling conditions

In the following, different types of coupling conditions between a porous medium and another
porous, pure solid or pure fluid medium are described. Superscripts 1 and 2 are labels of the
adjacent sub-domains, here also referred to as layers. The most fundamental conditions that must
be satisfied are the conservation of fluid flux (Eq. (1)) and the symmetry of the total traction
vectors (Eq. (2)).

4.1. Kinematic coupling conditions

If the adjacent media are structurally attached, then also

us1
i ¼ us

i ¼ us2
i : (24)

This is referred to as bonded conditions and reduces Eq. (21) to

f1u
f 1
i n1i ¼ f2u

f 2
i n1i þ ðf1 � f2Þu

s
i n
1
i : (25)

As can be seen, the normal component of the fluid displacement is discontinuous over the
coupling interface if f1af2:
If also at least one of the layers is jacketed (the other layer will in such a case be covered by the

same jacket), then by Eq. (21), Eq. (25) is further reduced to

u
f 1
i n1i ¼ us

i n
1
i ¼ u

f 2
i n1i : (26)

Now also the normal component of the fluid displacement is continuous over the coupling
interface.
On the other hand, consider the situation where the layers are not in structural contact but in

between the layers there is a fluid-filled gap, much smaller than the wave length. This so-called
unbonded coupling [10] is imposed by only assuming conservation of fluid flux (Eq. (1)) if both
layers are unjacketed. If one of the layers is jacketed, say layer 1, then Eq. (1) is reduced by Eq.
(21) to

u
f 1
i n1i ¼ us1

i n1i ¼ f2u
f 2
i n1i þ ð1� f2Þu

s2
i n1i : (27)

For the unbonded case, both the solid and the fluid displacements are discontinuous over the
coupling interface.
As a general remark, it may be noted that the tangential part of the fluid displacement is never

coupled and is hence in general discontinuous over a coupling interface (even if f1 ¼ f2). This is a
consequence of the nature of the homogenised fluid, which is assumed as inviscid within the Biot
theory. (The viscous effects of the real fluid on the pore scale are homogenised and is included by
the Biot parameter b in Eqs. (3a) and (3b).) However, if two unjacketed adjacent porous layers,
having identical material properties, are bonded, they may obviously be treated as one layer.
Thus, the tangential part of the fluid displacement may, in such a case, be assumed to be
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continuous, i.e.,

u
f 1
i � u

f 1
j n1j n1i ¼ u

f 2
i � u

f 2
j n1j n1i : (28)

Of course, this assumption is based on the underlying requirement that the loads are sufficiently
regular.
4.2. Dynamic coupling conditions

In addition to the symmetry of the total traction vectors, the following may be observed. If both
adjacent layers are unjacketed, then the pore pressure is continuous, i.e.,

ppore1 ¼ ppore2; (29)

since the pores are communicating over the interface, otherwise not. This also implies symmetry
of the structural traction vectors, i.e.,

T01
i þ T02

i ¼ 0: (30)

If the adjacent layers are unbonded, these structural traction vectors are both zero. Then, also the
tangential part of the total traction vectors is zero, i.e.,

ðT tot1
i � T tot1

j n1j n1i Þ ¼ ðT tot2
i � T tot2

j n1j n1i Þ ¼ 0; (31)

which may be shown to be equivalent to

ðT01
i � T01

j n1j n1i Þ ¼ ðT02
i � T02

j n2j n2i Þ ¼ 0: (32)

Consider the boundary integrals FðvÞ1 and F ðvÞ2 defined over x 2 G12; where G12 is the interface
between two layers. If any of the kinematic coupling conditions described in this section is
imposed on the test functions, and also considering the corresponding dynamic coupling
conditions, then it is evident that

FðvÞ1 þ FðvÞ2 ¼ 0: (33)

It may be noted that, in the context of coupling conditions for porous layers, the coupling
condition to a pure fluid is identical to the unbonded coupling to an unjacketed porous material
with f ¼ 1: Similarly, the coupling condition to a pure solid is identified as the coupling to a
jacketed porous medium with f ¼ 0:
Finally, it may be concluded that in those coupling situations, previously described, where

discontinuities of the displacements occur, these kinematic coupling equations must be imposed as
additional constraint equations. This complexity of implementation does not occur in fluid pore
pressure formulations e.g. Ref. [9], since the fluid pore pressure is continuous over material
discontinuities if the coupling interfaces are unjacketed. If an interface is jacketed, however, the
pore pressure is discontinuous.
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5. Hierarchical finite element basis for a hexahedral finite element

Consider a cube-shaped finite element with a Cartesian local coordinate system ðx1; x2; x3Þ: This
coordinate system has a one-to-one correspondence to the Cartesian global coordinate system by
ðx1; x2;x3Þ ¼ Akðx1; x2; x3Þ

k; where Ak is a bijective mapping which defines the actual geometry
(possibly curvilinear, but with hexahedral topology) of the kth finite element. The local
coordinates are hereafter tagged with a superscript k to denote the unique relation to the global
coordinate system. Let any of the six displacement components of u be approximated to

uk
i ðx1; x2; x3Þ

k
¼

Xp1þ2
l1¼1

Xp2þ2
l2¼1

Xp3þ2
l3¼1

ck
iðl1;l2;l3Þ

fðl1;l2;l3Þ
ðx1; x2; x3Þ

k; (34)

and choose as test functions

vk
jðm1;m2;m3Þ

¼ djfðm1;m2;m3Þ
ðx1; x2; x3Þ

k
8k; j;m1;m2;m3; (35)

where the six-dimensional vector di is defined as

di ¼ fdikg
6
k¼1: (36)

The coefficients ck
iðl1;l2;l3Þ

are called finite element degrees of freedoms (dofs). Each basis function
fðl1;l2;l3Þ

ðx1; x2; x3Þ
k (or so-called shape function) is composed of a product of three polynomials [4]

with local support over the cube, i.e.,

fðl1;l2;l3Þ
ðx1; x2; x3Þ

k
¼
def f l1

ðx1Þ f l2
ðx2Þ f l3

ðx3Þ; ðx1; x2; x3Þ
k
2 ½�1; 1�;

zero elsewhere:

(
(37)

These polynomials are here defined as [11,4]

f lðwÞ ¼
def

1
2
ð1� wÞ; l ¼ 1;

1
2
ð1þ wÞ; l ¼ 2;

Pintðl=2Þ
s¼0

ð�1Þsð2l � 2s � 5Þ!!

2ss!ðl � 2s � 1Þ!
wl�2s�1; lX3:

8>>>><
>>>>:

(38)

The polynomials for lp3 are referred to as hierarchical polynomials and p is the number of
hierarchical polynomials used in the basis; p þ 1 denotes the order of the polynomial basis used. It
may be shown that each of those shape functions, previously defined, which is non-zero at a finite
element boundary, is associated with a particular corner, edge, or surface. The corresponding dof
is given the same association.
Now, define a mesh of elements on each sub-domain and insert Eqs. (34) and (35) into Eq. (4).

Then, for any k,

Kkck ¼ fk (39)

is obtained, where ck ¼ fck
iðl1;l2;l3Þ

g: The elements of the dynamic finite element stiffness matrix Kk

and the finite element load vector fk are given by

Kk
jðm1;m2;m3Þ;iðl1;l2;l3Þ

¼ Beðfðl1;l2;l3Þ
ðx1; x2; x3Þ

kdi;fðm1;m2;m3Þ
ðx1; x2; x3Þ

kdjÞ (40)
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and

f k
jðm1;m2;m3Þ

¼ Feðfðm1;m2;m3Þ
ðx1; x2; x3Þ

kdjÞ: (41)

To evaluate the integrals in Eqs. (40) and (41), the mapping Ak is needed to transform the
integrals into the ðx1; x2; x3Þ

k-coordinate system.
Kinematic coupling conditions on sub-domain coupling interfaces are introduced on the

element level as linear constraint equations, which transforms these finite element stiffness
matrices into constrained matrices

Kk
cc

k
c ¼ fk

c : (42)

In this transformation, some dofs are eliminated and some dofs from the adjacent sub-domain are
temporarily added. This procedure is described in detail in Ref. [12]. The remaining coupling dofs
are constrained to be equal to the corresponding dofs of adjacent finite elements (associated with
the same geometrical entity). (Here it is assumed that adjacent meshes are compatible with respect
to finite element geometry and that the same order of approximation is used for the displacements
on adjacent surfaces.) This further reduces the number of independent dofs and couples the
element equations into a global system which may be written as

Kc ¼ f: (43)

This is a matrix representation of a finite-dimensional subspace version of Eq. (6). Finally,
equations from prescribed dofs are removed and the contributions of these prescribed dofs in
other equations are included in the right-hand side and are interpreted as reaction forces.
6. Numerical example of single-homogeneous polyurethane foam

6.1. Description of the numerical example

A parallelepiped-shaped domain with dimensions 0:2m� 0:3m� 0:5m in 1-, 2- and 3-direction,
respectively, is considered, with the non-homogeneous Neumann condition imposed on the face,
which is pointing in the negative 3-direction. On this face, the structural traction vector is
prescribed to ð0; 0; 1Þ; i.e., a unity normal traction vector in the positive 3-direction. On all other
boundaries, the homogeneous Neumann condition is imposed. The material parameters represent
a polyurethane foam with open cell structure and are given in Table 1. The derivation of the Biot
parameters Q, R, b, r11; r12 and r22 from the material parameters is described in Refs. [4,6,10] and
is not repeated here. The dynamic complex-valued Lamé moduli m; l; which include internal
material damping in the frame, are derived from an augmented Hooke’s law by Dovstam,
described in Refs. [4,7,8].
In the simulations performed, the frequencies 100 and 200Hz are considered. These frequencies

were chosen as two samples in the low-frequency region, exhibiting varying degrees of fluid–frame
coupling and difference in wave length. Some properties of the three Biot waves are given in Fig. 1
as functions of the frequency. The decoupling frequency of the compressional waves is about
70Hz. Hence, the compressional waves will here be referred to as frame borne, and air borne,
respectively. At both 100 and 200Hz, the air-borne wave is the most damped one and the shear
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Table 1

Material properties for a polyurethane foam

Static Young’s modulus 70:0� 103 Pa

Static Poisson’s ratio 0.39

Porous material density 22:1 kg=m3

Porosity 0.98

Fluid density 1:204 kg=m3

Fluid dynamic viscosity 1:84� 10�5

Fluid ratio of specific heats 1.4

Prandtl number 0.71

Viscous characteristic length 1:1� 10�4 m

Thermal characteristic length 7:42� 10�4 m

Static flow resistivity 3:75� 103 kg=m3 s

Tortuosity 1.17

Thermal form factor 0.25

Gas constant (for air) 286:7m2=s2 K
Absolute temperature 293.15K

Augmented Hooke’s law parameters [7,8]: a1 ¼ 1:0; b1 ¼ 3:1416; j1 ¼ 71:95; m1 ¼ 71:30; a2 ¼ 1:0; b2 ¼ 6:28� 104;
j2 ¼ 0; m2 ¼ 396:74:
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wave is least damped one. At 200Hz, the damping of the frame-borne wave is only slightly lower
than that of the shear wave. This implies most likely in combination with the nature of the
excitation that the displacement field should be dominated by rotational waves and also possibly
the compressional frame-borne waves. For the sake of simplicity and guaranteed convergence, the
simulations are also limited to isotropic and homogeneous (uniform) p-enrichments and mesh
refinements. That is, p1 ¼ p2 ¼ p3 ¼ p and the number of elements are the same in each
coordinate direction. In the following, this latter mesh size parameter is denoted by k. Hence, the
total number of elements is k3: Higher computational efficiency may be obtained by using non-
uniform meshes and anisotropic and non-uniform p-enrichments. This issue of adaptive hp-
strategies is, however, beyond the scope of the present work.
The quality of the solutions is evaluated in a relative error measure Erel¼

def
jF ðēÞj1=2=jFðūÞj1=2

proposed in Ref. [4]. Since the exact solution is not available, this measure is approximated to
Erel � jðF ðūref Þ � F ðūFEÞÞ=Fðūref Þj

1
2; where the reference solution uref here is the solution for p ¼

16; k ¼ 1: This is also discussed in Ref. [4]. A relative error less than 10�2 corresponds to perfect
match in eye-scope measure of a deflection shape.
Convergence is measured in terms of the number of dofs, as well as in terms of solution time. In

the present calculation, the equation solver, used is a front solver, where fully populated element
stiffness matrices are processed. As a result, despite the element stiffness matrices getting
increasingly sparse for higher values of p for parallelepiped-shaped elements (due to the
orthogonality properties of the hierarchical polynomials), the same computational time is
obtained as for curve-shaped elements (which, in general, have fully populated element stiffness
matrices). This is a conservative approach from the point of view of estimating the computational
efficiency (and would be alleviated in high-performance computing applications). Obviously, the
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Fig. 1. Wave properties for the air-borne compression wave (solid line), the frame-borne compression wave (dashed

line) and the shear wave (dotted line) versus the frequency. (The decay rate is close to one for a lowly damped wave.)
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high sparsity of element stiffness matrices strongly reduces the computational cost if an equation
solver designed for sparse matrices is used. E.g., simulations in Ref. [4] showed that the
computation time per dof for p-enrichment extensions of a single parallelepiped-shaped element
increased with approximately the same rate as for mesh refinement extension of low-order p.
However, the additional time for the numerical integration, which is needed for curve-shaped
elements, is still not taken into account.

6.2. Result and discussion

To survey the behaviour of the solutions, deformed plots of displacement fields are shown in
Figs. 2 and 3. At both frequencies, the solid displacement and the fluid displacement have fairly
similar behaviours. As can be seen from these figures, the displacement fields are quite ‘‘three-
dimensional’’ in the sense that the displacements perpendicular to the imposed traction vector
load are significant as compared to the displacements parallel to the load.
In Figs. 4 and 7, the hp-convergence for uniform meshes is shown versus the number of real-

valued dofs. (Real-valued dofs are used since the complex-valued equation system obtained from
the Biot’s equation must be rewritten into a real-valued indefinite equation system with double
size, in order to be solved by a real-valued equation solver.) In these simulations, the asymptotic
behaviour of the convergence [13] seems only to be captured for the lower-order elements p ¼ 0;
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Fig. 2. Deformation plot of the imaginary part of the fluid displacement at 100Hz (p ¼ 3; k ¼ 3; magnification factor
of deformations: 20,000).
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p ¼ 1 and possibly for p ¼ 2: Irregularities of the convergence for higher p in the pre-asymptotic
range have been observed in Ref. [4] for this problem and in Ref. [5] for one-dimensional
Helmholtz equation. This is due to the even–odd effect of the chosen polynomial basis, i.e. every
second extension adds only odd polynomials and vice versa.
The computational efficiency of different p is not as obvious as the convergence versus the

number of dofs. As illustrated in Figs. 5 and 8, the computation time not only depends on the
number of dofs. When using a frontal solver, the front-width of the equation system is a decisive
factor. (This is in analogy with the influence of the bandwidth for a skyline solver.) The
computation time may approximately be estimated to be proportional to the square of the average
front-width times the number of elements. For instance, in the case of one element with high order
of p, the number of operations is proportional to the cube of the number of real dofs, while in the
case of low order of p and many elements stacked in one direction, the number of operations is
proportional to the square of the number of dofs in an element times the number of elements. For
a dense, lower-order mesh, the number of operations per dof is lower than for a sparse, higher-
order mesh with the same number of dofs. Despite these favourable numbers, the extensions for
p ¼ 0 and 1 are computationally inefficient due to their slow convergence, as can be seen in Figs.
4, 7, 5 and 8. Figs. 6 and 9 show the magnitude of the displacement in the 3-direction along
straight lines parallel to the 3-direction. These samples of displacements are fairly representative
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Fig. 3. Deformation plot of the imaginary part of the solid displacement at 200Hz (p ¼ 4; k ¼ 4; magnification factor
of deformations: 40,000). Note that the deformation is symmetric with respect to the 1–3-plane and the 2–3-plane,

despite the presence of an apparent non-symmetric appearance as an effect of the projection of a three-dimensional

deformation onto a two-dimensional plot.
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of the quality of the solutions from extensions of different p and k, having approximately the same
computational time. Here, the linear element (p ¼ 0) clearly distinguishes itself as having bad
performance. At two 200Hz, the linear solution in Fig. 9 seems to have a significant dispersion
error.
Furthermore, a cut-on limit can also be seen in Figs. 4, 7, 5 and 8, before which the extensions

for pX1 all have similar convergence rates. This cut-on limit is shifted to the right and is more
distinct for 200Hz than 100Hz. Similar cut-on behaviour was also observed in Refs. [4,5] and the
limit is most likely related to the wave length. It can also be concluded that there is not necessarily
much to gain, from a computational effort point of view, by increasing the value of p above p ¼ 3:
In fact, if the required relative error is of the order 10�2; then p ¼ 3 gives higher accuracy than
p ¼ 4; with less computational effort. These results may give a guideline for choosing the value of
p. It should be noted that, nevertheless, as evident in Figs. 5 and 8, asymptotically as the number
of dofs increases towards infinity, the highest computational efficiency is obtained from the mesh
refinement extension of the highest order of p. This has previously been shown for acoustical
scattering problems [5] (Figs. 7–9).
7. Numerical example using a two-layered material

7.1. Description of the numerical example

Consider a two-layered material each with 1 cm thickness in the stacking direction. The cross-
sectional dimensions are 1 dm� 1dm: See Fig. 10. The material properties for the two layers
differs only in the volume porosity f: The two layers are hereafter denoted as layers 1 and 2. The
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volume porosities are f1 ¼ 0:98 and f2 ¼ 0:7: All other material properties are identical to the
previous example. On the free cross-sectional surface of layer 1, i.e., at x3 ¼ 0; a uniform normal
structural traction vector is prescribed. On all other boundaries, homogeneous Neumann
conditions are assumed. The porous layers, having unjacketed interfaces, are bonded to each
other (cf. Section 4 and Eq. (25)).
The simulations are performed at 100Hz for two different values of the static flow resistivity:

first s ¼ 3:75� 103 kg=m3 s (the same value as in previous example) and then s ¼ 3:75�
104kg=m3s to illustrate how the convergence rate of the fluid displacement is affected when the
viscous drag increases. (Note that the viscous drag coefficient b is linearly proportional to the
static flow resistivity.) In the following, the mesh size parameter k denotes the number of elements
in each coordinate direction for each porous layer, i.e., the total number of elements is 2k3:
7.2. Result and discussion

The first case with low flow resistivity is shown in Figs. 11–13. In Fig. 11, a local behaviour
close to the interface between the layers may be observed, especially close to the corner in the
lower left part of the figure. It should be kept in mind that at the free side boundaries the fluid
pressure is zero and thus the fluid displacement divergence is close to zero in the vicinity of those
boundaries. Comparison between the fluid displacement and the solid displacement reveals an
interesting difference in the convergence. As the mesh is refined, a much slower convergence may
be observed for the fluid displacement in the 3-direction in Fig. 12, compared to the corresponding
solid displacement in Fig. 13. Here, p ¼ 4 elements were used. It should be noted that
linear elements have too poor performance in this context to be practically useful, as can be seen
in Fig. 14.
Fig. 10. Sketch of the two-layered example.
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Fig. 11. Deformation plot of the fluid displacement magnified with a factor of 15,000. The lower layer (layer 1) is

excited on the lower (hidden) surface in upward direction. The mesh size is 3� 3� 3 elements in each layer, p ¼ 6;
s ¼ 3:75� 103 kg=m3 s:
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When the flow resistivity is increased, this convergence behaviour is modified. For the case with
10 times higher static fluid resistivity, the convergence rates of the fluid displacement and the solid
displacement are quite similar to each other, as can be seen in Fig. 15. The convergence behaviour
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in the former case cannot be fully explained at present, but a hypothesis is as follows: The
deviatoric fluid deformation is induced by the porous frame, but the fluid has no deviatoric
stiffness. Thus, this deformation is only limited by the dynamic coupling between the fluid and the
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frame. When these couplings are weak as in the case of low static flow resistivity and a tortuosity
close to unity, the fluid is less restricted by the frame and complex near-field behaviour close to
material discontinuities may occur. This explanation is also supported by the fact that the
convergence rate is increased when the static flow resistivity is increased. It, however, needs
further investigations to be fully justified.
8. Conclusions

The hierarchical finite element formulation of Biot’s equation regarding one single element
presented in Ref. [4] has been extended to meshes of elements. It is proposed to apply a
decomposition of the Neumann condition of the porous frame into two parts: one, containing a
purely structural contribution; the other, a purely fluid pressure contribution. This decomposition
is consistent with the Biot theory.
It has been pointed out that additional constraint equations are needed in order to handle

discontinuities of the fluid displacement due to discontinuities in the material properties. The hp-
convergence has been studied for a numerical example with homogeneous material properties.
Mesh refinement extensions of p ¼ 3 or 4 (i.e., fourth- or fifth-order polynomial finite element
interpolations) were found to be the most computationally efficient in an interval of accuracy,
which is interesting from an engineering application point of view.
A numerical example of a layered material with low static flow resistivity is given, showing

complex fluid displacement behaviour and slow local convergence close to the intersection
between free boundaries and a volume porosity discontinuity surface. This slow convergence
disappears when the flow resistivity is increased.
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